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Performance of a Virtual Adsorber System
for Removal of Lead

PATRICK CARRIERE, SHAHAB MOHAGHEGH, RAZI GASKARI,
BRIAN REED, and MAQBUL JAMIL

COLLEGE OF ENGINEERING AND MINERAL RESOURCES

WEST VIRGINIA UNIVERSITY

MORGANTOWN, WEST VIRGINIA 26506

ABSTRACT

A granular activated carbon (GAC) column is an effective treatment technology
for the removal of lead. However, this technology requires time-consuming and
expensive bench- and pilot-scale studies to design a full-scale system. A virtual
adsorber system (VAS) based on artificial neural network technology was devel-
oped from 67 bench-scale experiments as a new tool to optimize the GAC process.
In addition, VAS can be used to design a full-scale adsorber system by eliminating
the need for further lengthy and costly experiments. Data obtained from the VAS
indicated that decreasing the influent lead concentration from 50 to 1 ppm in-
creased the number of bed volumes (BVs) of wastewater treated at breakthrough
from 30 to 950 BVs and exhaustion from 200 to 1650 BV's, while the surface loading
decreased from 17 to 1.8 g Pb/g carbon. In addition, increasing the empty bed
contact time from 1.85 to 12.75 minutes for each influent lead concentration in-
creased the bed volumes of wastewater treated at breakthrough, while the bed
volumes at exhaustion decreased and the surface loading slightly changed for the
lower Pb concentration (1 and 10 ppm of Pb). Five sets of training data were
selected to test the VAS. It was found that the VAS could predict the bed volumes
at breakthrough and exhaustion, and surface loading with an accuracy of 97%.
The average coefficients of correlation, R, between actual and virtual bed volume
measurements at breakthrough and exhaustion and for surface loading were 0.988,
0.980, and 0.988, respectively, for the verification data, while they were 0.996,
0.994, and 0.996 for the training data. The high values of the correlation coefficients
demonstrated the high performance of the VAS for the removal of lead.
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INTRODUCTION

The presence of heavy metals in the environment is of concern because
of their toxicity and threat to human life. In 1983 an estimated 7.9 billion
gallons of heavy metals bearing wastewaters were generated in the United
States (1). Recent attention to the impact of low-level lead on public health
has encouraged a major research effort to develop effective means to
identify, monitor, and remove lead from drinking water, wastewater, and
groundwater. New regulations for lead in source and treated waters of
public water systems, promulgated under the Safe Drinking Water Act
amendments of 1986, require a source maximum contaminant level (MCL)
of 0.005 mg/L.

Recently, activated carbon has been shown to remove lead from aque-
ous waste streams (2). Based on these results, an adsorber system such as
a granular activated carbon (GAC) column may be an effective treatment
technique for removal of heavy metals. However, it can be a relatively
expensive process, especially if designed improperly. The proper design
of full-scale adsorbers typically includes time-consuming and expensive
pilot-scale studies. When regulations stipulate the maximum level for the
contaminants, the design of an adsorber system to achieve these objec-
tives requires the ability to predict the performance of the adsorbers.

Several adsorption and mathematical models are developed to describe
the mechanisms of adsorption of heavy metals or organics by hydrous
solids and GAC. These models are used by several researchers in an
attempt to understand the parameters that limit the contaminant concen-
tration within the water distribution system. In addition, the models are
used to predict contaminant sorption into a GAC and to evaluate the
performance of the adsorber system at the pilot- and full-scale level. These
models are based on many assumptions. However, few of these models
are totally satisfactory because they do not include all of the mechanisms
that account for chemical spreading in fixed-bed adsorber systems.

Unlike predictive adsorption and mathematical models that require pre-
cise knowledge of all the contributing variables, artificial neural networks
(ANN) can be a better tool to provide an understanding of how the ad-
sorber system will respond under the various conditions expected in actual
installations. The main objective of this study is to evaluate the perfor-
mance of a virtual adsorber system (VAS) developed using ANN for the
removal of lead.

BACKGROUND

Adsorption Mechanisms

Adsorption of a compound from a solvent to and into an adsorbent is
usually described by a two-step process: 1) Transport through the film to
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the outer surface of the particle, and 2) diffusion into the porous particle.
The latter transport may be diffusion in the pore liquid or diffusion in the
adsorbed phase. The adsorbed phase is assumed to consist of a layer of
adsorbed molecules on the inner surface of the particles, the pore walls.
The former mechanism is called pore diffusion and the latter surface diffu-
sion. The rate of transport may be governed by either pore or surface
diffusion or a combination of them besides the rate of transfer to the outer
surface. Furthermore, the particles have a polydisperse pore structure,
and the transport rate in pores of different sizes may not be equal. In very
small pores, transport will be very slow due to spatial hindrances.

Mathematical Models

Adsorber dynamics in fixed beds such as GAC have been modeled using
equilibrium theory, pseudomass transfer resistance, and both fluid- and
adsorbent-phase mass transfer resistance to describe the adsorption rate.

Equilibrium Theory

The simplest approach is equilibrium theory. Equilibrium theory as-
sumes that the adsorption rate is infinitely fast and provides asymptotic
solutions to multicomponent fixed-bed adsorption models in the limit of
rapid mass transfer rate. Furthermore, it can be used to estimate the order
in which individual components in a mixture appear in adsorber effluents.
However, equilibrium theory has limited application in the design and
operation of fixed-bed adsorbers because mass transfer resistances are
very important.

Pseudomass Transfer Resistance Models

These models describe the diffusion process by using simplified expres-
sions. They give better descriptions of column data than equilibrium the-
ory. However, many parameters in these simplified approaches come from
model-data comparisons, and they are not capable of describing column
data collected under a variety of conditions.

Mass Transfer Resistance Models

These models use pore or surface diffusive flux equations (Fick’s law)
for the intraparticle-phase mass transfer rate and the linear driving force
approximation, and they are known as film transfer for the liquid-phase
mass transfer rate.

Factors Affecting Metal Removal

Adsorption of heavy metal by activated carbon is a complex subject
because it depends on the chemistry of water, the heavy metal specifica-
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tions, and the chemistry of the carbon surface. Heavy metal removal by
activated carbon is affected by removal kinetics, solution pH, ionic
strength, competitive adsorption, and the adsorbate/adsorbent ratio.

Removal Kinetics

The removal of contaminants by activated carbon is a four-step process:
bulk solution transport, film diffusion transport, pore transport, and ad-
sorption. In bulk solution transport, the adsorbate is transported by diffu-
sion from the bulk solution to the boundary layer of water surrounding the
adsorbent particle. Film diffusion transport occurs by molecular diffusion
though the stationary layer of water (hydrodynamic boundary layer) that
surround particles. The boundary layer thickness is dependent on the rate
of flow past the particle. Thus, a higher flow rate results in a smaller
boundary layer. In pore transport the adsorbate is transported into and
around the adsorbent’s pores to available adsorption sites. Once the adsor-
bate has entered the pores, intraparticle transport may occur by molecular
diffusion through the solution in the pores (pore diffusion) or by diffusion
along the adsorbent surface (surface diffusion) after adsorption takes
place. Adsorption occurs after transport to an available site. Adamson (3)
reported the adsorption step to be rapid for physical adsorption; thus, the
preceding diffusion will control the rate at which molecules are removed
from solution. However, if adsorption is followed by a chemical reaction
that changes the nature of the molecule, the chemical reaction may be
slower than the diffusion step, by that means controlling the rate of com-
pound removal.

Solution pH

The pH of the solution affects contaminant removal by influencing the
surface charge of the activated carbon by affecting the distribution of the
metal ions in the solution. As the pH decreases, the solubility of the metal
generally increases. Sigworth and Smith (4) were among the first to report
that adsorption of an inorganic by activated carbon depended on solution
pH. The researchers showed that lead showed little adsorption at pH 2
but fairly good removal at pH 5. The onset of adsorption occurs before
hydrolysis and precipitation of metals, and generally coincides with the
loss of outer hydration covering of metal ions. It has been show that the
adsorption density (mass of metal removed per unit mass of carbon) of
Calgon Filtrasorb 400 increased with increasing pH to a maximum value
and then declined rather rapidly with any further increase in pH for re-
moval of chromium (5). When the pH was greater than 10, no appreciable
adsorption was observed. Adsorption of cadmium on Nuchar SN carbon
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peaked at approximately pH 6.7, followed by a decrease (6). However,
the amount removed began to increase again at pH > 8.0 due to the
resulting precipitation of cadmium from solution. Netzer and Hughes (7)
found that adsorption of lead, cobalt, and copper was insignificant at pH
< 2, but adsorption dramatically increased in the pH range from 4 to 10.
Tan and Teo (8) reported that adsorption of lead by activated carbon was
negligible at pH 1, but adsorption increased with increasing pH of the
solution. The researchers also reported that lead removal was steadily
increased between pH 5.5 and 11.5, but precipitation of white lead hydrox-
ide was found to occur at higher pH values. At pH > 12, there was a
reduction in lead removal due to the presence of PbOs and Pb(OH)s .
Cadmium removal using two powered activated carbons (Nuchar SN and
Darco HDB) was reported to be a strong function of solution pH (9). It
was reported by Reed and Nonavinakere (10) that the extent of cadmium/
nickel adsorption by three activated carbons (Darco KB, HD400, and
Calgon F400) increased with increasing pH until a maximum was reached.

The fraction of metal removed from solution increases from a low value
to nearly 100% in a narrow pH. This pH range is called the *‘pH-adsorption
edge’’ and is specific to the heavy metal and carbon type. The adsorption-
edge was from pH 3 to 7 for a majority of activated carbons. In general,
adsorption gradually increases with increasing pH value until the onset
of the adsorption edge is reached, after which adsorption increases signifi-
cantly. Corapcioglu and Huang (11) reported that the adsorption edge of
the lead species Pb(ll) was between pH 3 and 6, and that pH was a domi-
nant parameter because it affected the charge distribution of various spe-
cies and the hydroxyl group distribution at the carbon surface.

lonic Strength

Ionic strength and background electrolyte composition has been re-
ported to affect metal removal by activated carbon. Huang and Smith (6)
reported that cadmium removal decreased as ionic strength was increased
from 0.01 to 0.1 M. Reed and Nonavinakere (10) studied the effect of
ionic strength on metal adsorption by activated carbon. The researchers
reported that metal removal decreased with an increase in ionic strength.

Competing Adsorbates

Generally, the adsorption capacity for heavy metals by activated carbon
is reduced when more than one metal is present. Netzer and Hughes
(7) reported that copper greatly affected the adsorption of cobalt. The
adsorption capacity for lead was twice as much as that of copper and 10
times more than that of cobalt.



11:51 25 January 2011

Downl oaded At:

970 CARRIERE ET AL.

A competitive interaction has also been observed in the presence of
organic compounds. Dolan (12) reported on the removal of a phenol and
lead system by MWYV-B activated carbon. An EBCT of 1.09 minutes was
used. The feed solution contained either Pb(II) and phenol (1.0 x 10**
M) at a metal:ligand ratio of 1:1 or Pb(II) alone (1:0). Another reported
that phenol removal was adversely affected by the presence of lead, but
lead removal was unaffected by the presence of phenol.

Adsorbate/Adsorbent Ratio and Adsorbate Concentration

Metal removal by activated carbon in the batch mode depends on the
concentration of solution per gram of carbon (adsorbate/adsorbent ratio).
For the column mode the initial adsorbate concentration is important be-
cause the mass of carbon is constant. Tan and Teo (8) reported that the
initial lead concentration greatly affects lead removal. The authors con-
cluded that lead and chromium loading per gram of carbon (mg metal/g
carbon) decreased with a decrease in adsorbate concentration.

Factors Affecting GAC Column Performance

Factors affecting GAC column performance include: empty bed contact
time (EBCT), hydraulic loading rate (HLLR), length of mass transfer zone
(MTZ), and surface loading (X/M).

Empty Bed Contact Time (EBCT)

Netzer and Hughes (7) showed in batch studies that longer contact times
were necessary for completed adsorption equilibrium when more than one
metal was in solution with the carbon. The researchers concluded that
this was related to the number of adsorption sites to the number of metal
species in the solution.

The most important adsorber design parameter is the contact time or
the EBCT. EBCT can be described by the following equation:

EBCT = V/Q = Lped/(Q/A)Lgeq/approach velocity

where V is the bulk volume of carbon in the adsorber, Q is the volumetric
flow rate to the adsorber, Lg.q is the bed depth of carbon in the adsorber,
and A is the cross-sectional area of the bed. The actual contact time is
the product of the EBCT and intraparticle porosity, and this porosity
usually ranges between 0.4 and 0.5 (13). EBCTs for GAC adsorbers range
from a few minutes to more than 4 hours, depending on the contaminant
types and concentrations.
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EBCT has a significant impact on adsorber performance. For GAC col-
umn to yield any effluent of acceptable quality, the critical bed depth
and the corresponding minimum EBCT must be exceeded. As the EBCT
increases, the bed life (expressed in bed volumes of effluent to break-
through point) of the adsorber increases until a maximum value is reached.
Correspondingly, the carbon usage rate decreases to a minimum value.
For a single adsorber, an optimum EBCT exists at which both the carbon
usage rate and the efficiency are maximum. Increasing EBCT, or bed
depth at a constant HLR, impacts the total treatment cost. As adsorber
size increases, capital costs increase because of the increased costs of
the larger systems. Operating and maintenance costs decrease because of
decreasing carbon usage rate and replacement frequency.

Hydraulic Loading Rate (HLR)

The hydraulic loading rate can be defined as flow rate divided by the
cross-sectional area of the column. Hydraulic loading rates vary from
0.4 to 12 gpm/ft2, with a typical value being 2 to 4 gpm/ft>. In column
performance, the HLR can affect removal by varying the EBCT. Love
and Eilers (14) performed several pilot-scale experiments to study the
effect of increasing EBCT on bed life. A constant hydraulic loading rate
of 3 gpm/fi2 was for an influent of 18 ppb cis-1,2-dichloroethylene. As the
EBCT was increased from 6 to 12 minutes, and then to 18 minutes, the
number of bed volumes treated to a breakthrough concentration of 0.1
ppb was 4100, 7100, and 8100, respectively. The carbon usage rate for
the 18-minute contact time is approximately one-half the value for the 6-
minute contact time. Several authors have reported that increasing the
Lieq at a constant HLR will affect annual treatment (15-17).

Mass Transfer Zone (MTZ2)

The mass transfer zone (MTZ) is defined as the region of the activated
carbon column in which adsorption is taking place. The activated carbon
behind the MTZ is in equilibrium with the influent concentration (C. =
Cyp). The region within the MTZ is where the adsorbent and adsorbate
interact, and the degree of removal varies from 0 to 100%. This interaction
is called ‘‘exhaustion,”” and the resulting surface loading as X/M (mg/g).
The length of MTZ can be fixed for a given set of conduction, but Lesitical
varies with the breakthrough concentration.
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Surface Loading (X/M)

The surface loading (X/M) is related to column performance and can
be defined as mass of adsorbate per mass of adsorbent. Unlike batch
studies, the surface loading for columns is dependent on the initial adsor-
bate concentration (the mass of carbon is constant). The surface loading
increased with increasing initial adsorbate concentration, resulting in a
higher metal loading per gram of carbon.

Mechanics of a Neural System

In a typical neural data processing procedure, the data base is divided
into two separate portions called training and test sets. Training set is
used to develop the desired network. In this process (depending on the
paradigm that is being used), the desired output in the training set is used
to help the network adjust the weights between its neurons and processing
elements (supervised training.) Once the network has learned the informa-
tion in the training set and has ‘‘converged,’’ the test set is applied to the
network for verification. It is important to note that, although the user
has the desired output of the test set, it has not been seen by the network.
This is to ensure the integrity and robustness of the trained network. To
clarify the actual functionality of a neural system, a short discussion on
the mechanics and components of artificial neural network seems neces-
sary. A fundamental understanding of theory and application of computa-
tional intelligence and neural networks specifically is essential in achieving
meaningful results and repeatable outcomes.

In neural computing the artificial neuron is called a processing element
or PE for short. The word node is also used for this simple building block.
These artificial neurons bear only a modest resemblance to the real thing.
They are barely a first-order approximations of biological neurons. Neu-
rons in the human brain perform at least 150 different processes, whereas
processing elements model approximately three of those processes. The
PE handles several basic functions. It must evaluate input signals and
determine the strength of each one. Next, it must calculate a total for the
combined input signals and compare that total to some threshold level.
Finally, it must determine what the output should be. Just as there are
many inputs (stimulation levels) to a neuron, there should be many input
signals to a PE. All of them should come into PE simultaneously. In re-
sponse, a neuron either ‘‘fires’”” or ‘‘doesn’t fire,”” depending on some
threshold level. The PE will be allowed a single output signal; just as in
a biological neuron—many inputs, one output.

In addition, just as real neurons are affected by things other than inputs,
some networks provide a mechanism for other influences. Sometimes this
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extra input is called a bias term, or a forcing term. It could also be a
forgetting term, when a system needs to unlearn something. Each input
will be given a relative weighing which will affect the impact of that input.
This is similar to the varying synaptic strengths of biological neurons.
Some inputs are more important than others in the way they combine to
produce an impulse. Weights are adaptive coefficients within the network
that determine the intensity of the input signal. One might think of them
as a measure of the connection strength. The initial weight for a PE could
be modified in response to various inputs and according to the network’s
own rules for modification.

Mathematically, the inputs and the weights on the inputs as vectors,
suchas(ly, I, ... ,I,)and (W, W,, ..., W,) must be considered. The
total input signal is the dot, or inner, product of the two vectors. The
result is a scalar, not a vector. Geometrically, the inner product of two
vectors can be considered a measure of their similarity. If the vectors
point in the same direction, the inner product is maximum; if the vectors
point in opposite directions (180°), their inner product is minimum. What
was discussed before about signals coming into biological neuronal syn-
apses applies here as well: signals can be positive (excitatory) or negative
(inhibitory). A positive input promotes the firing of the PE, whereas a
negative input tends to keep the PE from firing. If some local memory is
attached to the PE, one can store results of previous computations and
modify the weights used as the process continues. This ability to change
the weights allows the PE to modify its behavior in response to its inputs,
or learn. When weight adjustments are made in preceding layers of feed-
forward networks by “‘backing up’’ from outputs, the term backpropaga-
tion is used. This is an important concept, because most networks today
employ backpropagation algorithms.

Now, suppose that this processing element is combined with other PEs
to make a layer of these nodes. Inputs could be connected to many nodes
with various weights, resulting in a series of outputs, one per node. The
connections correspond roughly to the axons and synapses in a biological
system, and they provide a signal transmission pathway between the
nodes. Several layers can be interconnected. The layer that receives the
inputs is called the input layer. It typically performs no function other
than the buffering of the input signal. The network outputs are generated
from the output layer. Any other layers are called hidden layers because
they are internal to the network and have no direct contact with the exter-
nal environment. Sometimes they are likened to a “‘black box’’ within
the network system. Although they are not immediately visible, one can
examine what goes on in those layers. There may be zero to several hidden
layers. The connections are multiplied by the weights associated with that
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particular connection. They convey analog values. Note that there are
many more connections than nodes. The network is said to be fully con-
nected if every output from one layer is passed along to every node in
the next layer.

Virtual adsorber system (VAS) presents a new and fresh approach to-
ward soft experimentation with adsorber reactor systems such as granular
activated carbon columns. The term soft experimentation is used to em-
phasize two points. First, word ‘‘soft’’ implies that instead of experimental
laboratories, the process is carried out using a recently developed software
(VAS). Second, the word ‘‘experimentation’’ is used to accentuate the
high degree of accuracy (comparable to actual laboratory experiments)
achievable using this software. It should also be noted that authors are
not using the word ‘‘modeling” for their approach. This is due to the
nature of the main tool used for VAS development, namely artificial neural
networks. In using neural nets to mimic a process, no mathematical model-
ing takes place. Neural nets by definitions are model-free function esti-
mators (18). They learn the process by observing its behavior, and esti-
mate its functionality by adjusting the strength of network
interconnections. Another factor that distinguishes the approach used in
this study with mathematical modeling is the fact that during a mathemati-
cal modeling process two sets of information are essential for correct and
accurate results. First is the number of parameters (variables) involved
in the process and second is an accurate knowledge of the interrelation-
ships (no matter how complex and nonlinear) between different param-
eters. When neural networks are used to build a function that estimates
the process behavior, a complete knowledge of the above factors (all the
parameters involved and their interrelationships) is not an absolute neces-
sity. Using its massive connectivity, the neural networks can construct a
high dimensional space through which accurate pattern recognition be-
comes possible. Another important point that recognizes neurocomputing
from conventional mathematical modeling is its overall behavior. Even if
a mathematical model of a certain process is available, its use is dependent
on the accessibility of data and information on all involved variables in
the model. A missing piece of information can cause the model to come
to a halt. On the other hand, once a neural network is built to mimic a
certain process, missing pieces of information will not cause an abrupt
and total breakdown of the system., Because knowledge is distributed
throughout the network, as opposed to a particular location, incomplete
information, although it may jeopardize an accurate result, will not stop
the whole process. As is known in neurocomputing circles, neural net-
works will ‘‘degrade gracefully.”
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MATERIALS AND METHODOLOGY
Experimental Procedures

The experimental work was conducted at the Environmental Engineer-
ing Laboratories of West Virginia University. GAC columns were oper-
ated in the upflow mode. The column setup schematic is presented in Fig.
1. Sixty-seven bench-scale experiments were carried out for the removal
of lead from a synthetic wastewater using a GAC column. Lead nitrate
was used as the source of lead for each experiment. The background
electrolyte was sodium nitrate because it does not form complexes with
lead. Wastewater pH was maintained at 5.4 to make sure the lead remained
soluble. The pH was adjusted using nitric acid and/or sodium hydroxide.
Parameters monitored during the experiment are presented in Table 1.
Several different types of columns were used to achieve the specified
empty bed contact times (EBCTs). The carbon was washed and sieved
through a US No. 50 mesh sieve and added to the column by a slurry
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FIG. 1 Schematic of GAC column setup.
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TABLE 1
Parameters Monitored for the VAS Development
Number Parameter Range
1 Mass of activated carbon 33-500 g
2 Length of column (cm) 15-122 cm
3 Diameter of the column (cm) 2.5-3.18 cm
4 Number of bed volumes treated 117-1556 BV/day
per day
5 Number of regeneration 0-4 times
6 Concentration of fead (mg/L) 1-50 mg/L
7 Empty bed contact time (EBCT) 1.85-12.75 minutes
8 Hydraulic loading ratio (gpm/ft®) 2-4 gpm/ft?

method to avoid the presence of air bubbles. A variable speed Cole-Palmer
pump was used to maintain the influent hydraulic loading rate. A carbon
treatment step consisting of contacting the carbon columns with 10 bed
volumes of 0.1 N HCI followed by 10 bed volumes of 0.1 N NaOH was
employed for all the experiments. Several different influent concentrations
of lead were investigated. The influent pH was maintained at 5.4, and
sodium nitrate at an ionic strength of 0.01 N was used as a swamping
electrolyte. Following each column run the carbon was regenerated using
the same procedure as the pretreatment step. The acid rinse desorbed the
lead and the base rinse reconditioned the carbon for the next run. For
reproducibility, the experiments were repeated at least three times.

Lead samples were preserved by acidifying with concentrated nitric
acid. The higher concentrations of lead were analyzed using a Perkin-
Elmer Model 3100 ZL Atomic Adsorption (AA) spectrophotometer. The
lower concentration (1 ppm) was measured with a Zeeman Atomic Ad-
sorption Spectrometer. Criteria used to study the column performance
include breakthrough bed volume, exhaustion bed volume, and surface
loading. A schematic of the output data is presented in Fig. 2. A bed
volume is the volume occupied by the carbon bed, including carbon vol-
ume and void volume. Breakthrough is the number of bed volumes treated
when effluent concentration is 3% of influent concentration. Exhaustion
bed volumes are the number volumes treated when effluent concentration
is 95% of the influent concentration. Surface loading is the ratio of the
mass (mg) of lead adsorbed on the carbon bed to the mass (g) of carbon
in the column.
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FIG. 2 Schematic of GAC column output data.

Neurocomputing Procedures

The bench-scale GAC column data was used to design and develop the
virtual adsorber system (VAS), An ensemble of several neural networks
was designed to mimic the experimental study. The compiled data were
applied to the network, and the network parameters were tuned for opti-
mum results. In Fig. 3 the architecture of the neural network designed
for VAS is presented. The architecture, a fully connected network, in-
cluded 240 synaptic connections (pertaining to a 240 dimensional hyper-
space) between 13 input neurons, 15 hidden neurons, structured in a single
layer and an output layer containing 3 neurons. Bipolar linear normaliza-
tion was used in the input layer, and logistic function was used as the
main activation function in the hidden and output layer neurons. Back-
propagation of error was used as the training paradigm. The VAS was
designed to predict bed volume at breakthrough, bed volume at exhaus-
tion, and surface loading (ratio of the mass of contaminant to the mass
of activated carbon) in a GAC column that removes lead from water.
Eleven experiments called the verification samples were selected from
the 67 bench-scale experiments. The remaining 56 laboratory experiments
were chosen as the training data to train the neural network. Five sets of
training data were selected to test the VAS. The organization of data
samples for training and testing is presented in Table 2. The purpose of
separating the verification samples was to test VAS’s predictive capabili-
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INPUT LAYER HIDDEN LAYER OUTPUT LAYER

FIG. 3 Architecture of the neural network for the virtual adsorber system (VAS).

ties using an independent set of data. The performance of the final product
(VAS) was based on how well the network could generalize what it had
learned and how well it could predict the outcome of the contaminant
removal process on a set of data it had never seen before.

RESULTS AND DISCUSSIONS

The results of the 67 bench-scale experiments were presented in previ-
ous papers (9, 10, 19, 20). In this paper the data were used to develop

TABLE 2
Organization of Data Samples for Training and Testing
Set Testing set runs Training set runs

1 R2, R14, R16, R18, R21, R27, R29, R32, 56 Runs selected from a total of 67
RS2, R62, R66

2 R1, R7, R11, R15, R22, R27, R32, R3246, 56 Runs selected from a total of 67
R57, R59, R60

3 R20, R21, R25, R29, R31, R43, R51, R62, 56 Runs selected from a total of 67
R64, R65, R66

4 R2, R8, R20, R22, R30, R32, R48, R49, 56 Runs selected from a total of 67
R60, R63, R66

5 R1, RS, R21, R41, R43, R48, R51, RS2, 56 Runs selected from a total of 67

R53, R66, R68
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and evaluate the performance of the VAS for removal of lead. The artificial
neural network (using a supervised training paradigm) was trained with a
set of data (training data) that included the pair of input and the corre-
sponding output values. The weight (strength) of the connections between
neurons were initialized and the training started by exposing the network
to one set of the input data (input—output pair) at a time. As the network
observed the input—output pair, it adjusted the weights of its connections
to capture different features presented in the training data. Some conver-
gence criteria were set for reaching acceptable results. Once the conver-
gence was achieved, the network had reached a stable state. At this point
the network had extracted all the necessary information from the training
data and had established a complex pattern between input and output
variables. Information and knowledge were encoded in the form of stable
states or mapping embedded in the network. Once this step was com-
pleted, the network was ready to recognize any pattern related to the
problem. Five sets of training data were used to test the VAS. Actual and
virtual measurement of bed volume (BV) at breakthrough, exhaustion,
and the surface loading data for both the training data and verification
samples are presented in Figs. 4, 5, and 6, respectively. Please note that
these figures represent only the data set 2. As observed, the VAS results
indicated that decreasing the influent lead concentration from 50 to 1 mg/
L (ppm) increased the number of bed volumes (BVs) of wastewater treated
at breakthrough from 30 to 950 BVs and at exhaustion from 200 to 1650
BVs. The surface loading was noticed to decrease from 17 to 1.8 g Pb/g
carbon. In addition, increasing the empty bed contact time (EBCT) from
1.85 to 12.75 minutes for each influent lead concentration increased the
bed volumes of wastewater treated at breakthrough but decreased the bed
volumes at exhaustion, while the surface loading slightly changed for the

TABLE 3
Coefficients of Correlation for Test and Training

Coefficients of correlation, R

BV at breakthrough BV at exhaustion Surface loading
Set Test Training Test Training Test Training
! 0.998 0.996 0.990 0.995 0.990 0.994
2 0.991 0.999 0.960 0.999 0.998 0.999
3 0.967 0.996 0.996 0.995 0.979 0.998
4 0.991 0.995 0.966 0.994 0.990 0.997
5 0.994 0.993 0.988 0.988 0.984 0.994
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lower Pb concentration (1 and 10 mg/L of Pb). Clearly the network had
learned the training data well and could reproduce the experimental results
that it had been trained on with accuracies of about 97%. The correlation
coefficients, R, for the five training sets of data obtained from the VAS
software are presented in Table 3. The average coefficients of correlation
for bed volumes at breakthrough and exhaustion and for surface loading
are 0.996, 0.994, and 0.996, respectively.

The bottom graphs in the aforementioned figures (verification samples)
test the generalization power of the developed VAS. A degree of accuracy
of 96% could be achieved for the five test sets. The correlation coeffi-
cients, R, for the five verification samples data obtained from the VAS
software are presented in Table 3.

The VAS software provided very accurate values for bed volumes at
breakthrough, bed volumes at exhaustion, and surface loading for sets of
input data (experimental conditions) that it had never seen before. The
average coefficients of correlation for bed volumes at breakthrough and
exhaustion and for surface loading are 0.988, 0.980, and 0.988, respec-
tively.

CONCLUSIONS

Granular activated carbon (GAC) column data on lead removal in aque-
ous system were collected from 67 bench-scale experiments to develop the
virtual adsorber system (VAS) based on artificial neural network (ANN)
technology. The data obtained from the VAS indicated that decreasing
the influent lead concentration from 50 to 1 ppm increased the number of
bed volumes (BVs) of wastewater treatéd at breakthrough from 30 to 950
BVs and exhaustion from 200 to 1650 BVs, but decreased the surface
loading from 17 to 1.8 g Pb/g carbon. In addition, increasing the empty
bed contact time (EBCT) from 1.85 to 12.75 minutes for each influent
lead concentration increased the bed volumes of wastewater treated at
breakthrough but decreased the bed volumes at exhaustion, while the
surface loading slightly changed for the lower Pb concentration (1 and 10
ppm of Pb). Five sets of training data were used to test the VAS. It was
found that the VAS could predict the bed volumes at breakthrough and
exhaustion and for surface loading with an accuracy of 97%. The average
coefficients of correlation, R, between actual and virtual measurements
of bed volumes at breakthrough and exhaustion and for surface loading
were 0.988, 0.980, and 0.988, respectively, for the verification data, while
they were 0.996, 0.994, and 0.996 for the training data. The high values
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of the correlation coefficients demonstrated the high performance of the
VAS for removal of lead.

The outcome of this study can be used to help engineers in selecting
the best combination of parameters for heavy metal treatment and help
them in designing the process by eliminating the need for further lengthy
and costly experimentations. The main characteristics of VAS are that
unlike conventional approaches based on rigorous mathematical models,
there is no attempt in VAS to mathematically model the decontamination
process. This is an advantage of the process being introduced in this study.
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