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Performance of a Virtual Adsorber System 
for Removal of Lead 

PATRICK CARRIERE, SHAHAB MOHAGHEGH, RAZI GASKARI, 
BRIAN REED, and MAQBUL JAMIL 
COLLEGE OF ENGINEERING AND MINERAL RESOURCES 
WEST VIRGINIA UNIVERSITY 
MORGANTOWN, WEST VIRGINIA 26506 

ABSTRACT 

A granular activated carbon (GAC) column is an effective treatment technology 
for the removal of lead. However, this technology requires time-consuming and 
expensive bench- and pilot-scale studies to design a full-scale system. A virtual 
adsorber system (VAS) based on artificial neural network technology was devel- 
oped from 67 bench-scale experiments as a new tool to optimize the GAC process. 
In addition, VAS can be used to design a full-scale adsorber system by eliminating 
the need for further lengthy and costly experiments. Data obtained from the VAS 
indicated that decreasing the influent lead concentration from 50 to 1 ppm in- 
creased the number of bed volumes (BVs) of wastewater treated at breakthrough 
from 30 to 950 BVs and exhaustion from 200 to 1650 BVs, while the surface loading 
decreased from 17 to 1.8 g Pb/g carbon. In addition, increasing the empty bed 
contact time from 1.85 to 12.75 minutes for each influent lead concentration in- 
creased the bed volumes of wastewater treated at breakthrough, while the bed 
volumes at exhaustion decreased and the surface loading slightly changed for the 
lower Pb concentration (1 and 10 ppm of Pb). Five sets of training data were 
selected to test the VAS. It was found that the VAS could predict the bed volumes 
at breakthrough and exhaustion, and surface loading with an accuracy of 97%. 
The average coefficients of correlation, R ,  between actual and virtual bed volume 
measurements at  breakthrough and exhaustion and for surface loading were 0.988, 
0.980, and 0.988, respectively, for the verification data, while they were 0.996, 
0.994, and 0.996 for the training data. The high values of the correlation coefficients 
demonstrated the high performance of the VAS for the removal of lead. 
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966 CARRIERE ET AL. 

INTRODUCTION 

The presence of heavy metals in the environment is of concern because 
of their toxicity and threat to human life. In 1983 an estimated 7.9 billion 
gallons of heavy metals bearing wastewaters were generated in the United 
States (1) .  Recent attention to the impact of low-level lead on public health 
has encouraged a major research effort to develop effective means to 
identify, monitor, and remove lead from drinking water, wastewater, and 
groundwater. New regulations for lead in source and treated waters of 
public water systems, promulgated under the Safe Drinking Water Act 
amendments of 1986, require a source maximum contaminant level (MCL) 
of 0.005 mg/L. 

Recently, activated carbon has been shown to remove lead from aque- 
ous waste streams (2). Based on these results, an adsorber system such as 
a granular activated carbon (GAC) column may be an effective treatment 
technique for removal of heavy metals. However, it can be a relatively 
expensive process, especially if designed improperly. The proper design 
of full-scale adsorbers typically includes time-consuming and expensive 
pilot-scale studies. When regulations stipulate the maximum level for the 
contaminants, the design of an adsorber system to achieve these objec- 
tives requires the ability to predict the performance of the adsorbers. 

Several adsorption and mathematical models are developed to describe 
the mechanisms of adsorption of heavy metals or organics by hydrous 
solids and GAC. These models are used by several researchers in an 
attempt to understand the parameters that limit the contaminant concen- 
tration within the water distribution system. In addition, the models are 
used to predict contaminant sorption into a GAC and to evaluate the 
performance of the adsorber system at the pilot- and full-scale level. These 
models are based on many assumptions. However, few of these models 
are totally satisfactory because they do not include all of the mechanisms 
that account for chemical spreading in fixed-bed adsorber systems. 

Unlike predictive adsorption and mathematical models that require pre- 
cise knowledge of all the contributing variables, artificial neural networks 
(ANN) can be a better tool to provide an understanding of how the ad- 
sorber system will respond under the various conditions expected in actual 
installations. The main objective of this study is to evaluate the perfor- 
mance of a virtual adsorber system (VAS) developed using ANN for the 
removal of lead. 

BACKGROUND 
Adsorption Mechanisms 

Adsorption of a compound from a solvent to and into an adsorbent is 
usually described by a two-step process: 1 )  Transport through the film to 
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VIRTUAL ADSORBER SYSTEM FOR REMOVAL OF LEAD 967 

the outer surface of the particle, and 2) diffusion into the porous particle. 
The latter transport may be diffusion in the pore liquid or diffusion in the 
adsorbed phase. The adsorbed phase is assumed to consist of a layer of 
adsorbed molecules on the inner surface of the particles, the pore walls. 
The former mechanism is called pore diffusion and the latter surface diffu- 
sion. The rate of transport may be governed by either pore or surface 
diffusion or a combination of them besides the rate of transfer to the outer 
surface. Furthermore, the particles have a polydisperse pore structure, 
and the transport rate in pores of different sizes may not be equal. In very 
small pores, transport will be very slow due to spatial hindrances. 

Mathematical Models 
Adsorber dynamics in fixed beds such as GAC have been modeled using 

equilibrium theory, pseudomass transfer resistance, and both fluid- and 
adsorbent-phase mass transfer resistance to describe the adsorption rate. 

Equilibrium Theory 

The simplest approach is equilibrium theory. Equilibrium theory as- 
sumes that the adsorption rate is infinitely fast and provides asymptotic 
solutions to multicomponent fixed-bed adsorption models in the limit of 
rapid mass transfer rate. Furthermore, it can be used to estimate the order 
in which individual components in a mixture appear in adsorber effluents. 
However, equilibrium theory has limited application in the design and 
operation of fixed-bed adsorbers because mass transfer resistances are 
very important. 

Pseudomass Transfer Resistance Models 

These models describe the diffusion process by using simplified expres- 
sions. They give better descriptions of column data than equilibrium the- 
ory. However, many parameters in these simplified approaches come from 
model-data comparisons, and they are not capable of describing column 
data collected under a variety of conditions. 

Mass Transfer Resistance Models 

These models use pore or surface diffusive flux equations (Fick’s law) 
for the intraparticle-phase mass transfer rate and the linear driving force 
approximation, and they are known as film transfer for the liquid-phase 
mass transfer rate. 

Factors Affecting Metal Removal 
Adsorption of heavy metal by activated carbon is a complex subject 

because it depends on the chemistry of water, the heavy metal specifica- 
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968 CARRIERE E l  AL. 

tions, and the chemistry of the carbon surface. Heavy metal removal by 
activated carbon is affected by removal kinetics, solution pH, ionic 
strength, competitive adsorption, and the adsorbateladsorbent ratio. 

Removal Kinetics 

The removal of contaminants by activated carbon is a four-step process: 
bulk solution transport, film diffusion transport, pore transport, and ad- 
sorption. In bulk solution transport, the adsorbate is transported by diffu- 
sion from the bulk solution to the boundary layer of water surrounding the 
adsorbent particle. Film diffusion transport occurs by molecular diffusion 
though the stationary layer of water (hydrodynamic boundary layer) that 
surround particles. The boundary layer thickness is dependent on the rate 
of flow past the particle. Thus, a higher flow rate results in a smaller 
boundary layer. In pore transport the adsorbate is transported into and 
around the adsorbent’s pores to available adsorption sites. Once the adsor- 
bate has entered the pores, intraparticle transport may occur by molecular 
diffusion through the solution in the pores (pore diffusion) or by diffusion 
along the adsorbent surface (surface diffusion) after adsorption takes 
place. Adsorption occurs after transport to an available site. Adamson (3) 
reported the adsorption step to be rapid for physical adsorption; thus, the 
preceding diffusion will control the rate at which molecules are removed 
from solution. However, if adsorption is followed by a chemical reaction 
that changes the nature of the molecule, the chemical reaction may be 
slower than the diffusion step, by that means controlling the rate of com- 
pound removal. 

Solution pH 

The pH of the solution affects contaminant removal by influencing the 
surface charge of the activated carbon by affecting the distribution of the 
metal ions in the solution. As the pH decreases, the solubility of the metal 
generally increases. Sigworth and Smith (4) were among the first to report 
that adsorption of an inorganic by activated carbon depended on solution 
pH. The researchers showed that lead showed little adsorption at pH 2 
but fairly good removal at pH 5. The onset of adsorption occurs before 
hydrolysis and precipitation of metals, and generally coincides with the 
loss of outer hydration covering of metal ions. It has been show that the 
adsorption density (mass of metal removed per unit mass of carbon) of 
Calgon Filtrasorb 400 increased with increasing pH to a maximum value 
and then declined rather rapidly with any further increase in pH for re- 
moval of chromium (5). When the pH was greater than 10, no appreciable 
adsorption was observed. Adsorption of cadmium on Nuchar SN carbon 
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peaked at approximately pH 6.7, followed by a decrease (6). However, 
the amount removed began to increase again at pH > 8.0 due to the 
resulting precipitation of cadmium from solution. Netzer and Hughes (7) 
found that adsorption of lead, cobalt, and copper was insignificant at pH 
< 2, but adsorption dramatically increased in the pH range from 4 to 10. 
Tan and Teo (8) reported that adsorption of lead by activated carbon was 
negligible at pH 1, but adsorption increased with increasing pH of the 
solution. The researchers also reported that lead removal was steadily 
increased between pH 5.5 and 11.5, but precipitation of white lead hydrox- 
ide was found to occur at higher pH values. At pH > 12, there was a 
reduction in lead removal due to the presence of Pb02 and Pb(0H);. 
Cadmium removal using two powered activated carbons (Nuchar SN and 
Darco HDB) was reported to be a strong function of solution pH (9). It 
was reported by Reed and Nonavinakere (10) that the extent of cadmium/ 
nickel adsorption by three activated carbons (Darco KB, HD400, and 
Calgon F400) increased with increasing pH until a maximum was reached. 

The fraction of metal removed from solution increases from a low value 
to nearly 100% in a narrow pH. This pH range is called the "pH-adsorption 
edge" and is specific to the heavy metal and carbon type. The adsorption- 
edge was from pH 3 to 7 for a majority of activated carbons. In general, 
adsorption gradually increases with increasing pH value until the onset 
of the adsorption edge is reached, after which adsorption increases signifi- 
cantly. Corapcioglu and Huang (1 1) reported that the adsorption edge of 
the lead species Pb(I1) was between pH 3 and 6, and that pH was a domi- 
nant parameter because it affected the charge distribution of various spe- 
cies and the hydroxyl group distribution at the carbon surface. 

Ionic Strength 

Ionic strength and background electrolyte composition has been re- 
ported to affect metal removal by activated carbon. Huang and Smith (6) 
reported that cadmium removal decreased as ionic strength was increased 
from 0.01 to 0.1 M. Reed and Nonavinakere (10) studied the effect of 
ionic strength on metal adsorption by activated carbon. The researchers 
reported that metal removal decreased with an increase in ionic strength. 

Competing Adsorbates 

Generally, the adsorption capacity for heavy metals by activated carbon 
is reduced when more than one metal is present. Netzer and Hughes 
(7) reported that copper greatly affected the adsorption of cobalt. The 
adsorption capacity for lead was twice as much as that of copper and 10 
times more than that of cobalt. 
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970 CARRIERE ET AL. 

A competitive interaction has also been observed in the presence of 
organic compounds. Dolan (12) reported on the removal of a phenol and 
lead system by MWV-B activated carbon. An EBCT of 1.09 minutes was 
used. The feed solution contained either Pb(I1) and phenol (1.0 x lo** 
M) at a meta1:ligand ratio of 1 : 1 or Pb(I1) alone ( 1  : O ) .  Another reported 
that phenol removal was adversely affected by the presence of lead, but 
lead removal was unaffected by the presence of phenol. 

Adsorbate/Adsorbent Ratio and Adsorbate Concentration 

Metal removal by activated carbon in the batch mode depends on the 
concentration of solution per gram of carbon (adsorbate/adsorbent ratio). 
For the column mode the initial adsorbate concentration is important be- 
cause the mass of carbon is constant. Tan and Teo (8) reported that the 
initial lead concentration greatly affects lead removal. The authors con- 
cluded that lead and chromium loading per gram of carbon (mg metal/g 
carbon) decreased with a decrease in adsorbate concentration. 

Factors Affecting GAC Column Performance 

Factors affecting GAC column performance include: empty bed contact 
time (EBCT), hydraulic loading rate (HLR), length of mass transfer zone 
(MTZ), and surface loading (WM). 

Empty Bed Confacf Time (EBCT) 

Netzer and Hughes (7) showed in batch studies that longer contact times 
were necessary for completed adsorption equilibrium when more than one 
metal was in solution with the carbon. The researchers concluded that 
this was related to the number of adsorption sites to the number of metal 
species in the solution. 

The most important adsorber design parameter is the contact time or 
the EBCT. EBCT can be described by the following equation: 

EBCT = V/Q = L B e d / (  Q/A)LBed/approach velocity 

where V is the bulk volume of carbon in the adsorber, Q is the volumetric 
flow rate to the adsorber, L B ~ ~  is the bed depth of carbon in the adsorber, 
and A is the cross-sectional area of the bed. The actual contact time is 
the product of the EBCT and intraparticle porosity, and this porosity 
usually ranges between 0.4 and 0.5 (13). EBCTs for GAC adsorbers range 
from a few minutes to more than 4 hours, depending on the contaminant 
types and concentrations. 
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EBCT has a significant impact on adsorber performance. For GAC col- 
umn to yield any effluent of acceptable quality, the critical bed depth 
and the corresponding minimum EBCT must be exceeded. As the EBCT 
increases, the bed life (expressed in bed volumes of effluent to break- 
through point) of the adsorber increases until a maximum value is reached. 
Correspondingly, the carbon usage rate decreases to a minimum value. 
For a single adsorber, an optimum EBCT exists at which both the carbon 
usage rate and the efficiency are maximum. Increasing EBCT, or bed 
depth at a constant HLR, impacts the total treatment cost. As adsorber 
size increases, capital costs increase because of the increased costs of 
the larger systems. Operating and maintenance costs decrease because of 
decreasing carbon usage rate and replacement frequency. 

Hydraulic Loading Rate (HL R) 

The hydraulic loading rate can be defined as flow rate divided by the 
cross-sectional area of the column. Hydraulic loading rates vary from 
0.4 to 12 gpm/ft2, with a typical value being 2 to 4 gpm/ft2. In column 
performance, the HLR can affect removal by varying the EBCT. Love 
and Eilers (14) performed several pilot-scale experiments to study the 
effect of increasing EBCT on bed life. A constant hydraulic loading rate 
of 3 gpm/ft2 was for an influent of 18 ppb cis-i ,2-dichioroethylene. As the 
EBCT was increased from 6 to 12 minutes, and then to 18 minutes, the 
number of bed volumes treated to a breakthrough concentration of 0.1 
ppb was 4100, 7100, and 8100, respectively. The carbon usage rate for 
the 18-minute contact time is approximately one-half the value for the 6- 
minute contact time. Several authors have reported that increasing the 
Lbed at a constant HLR will affect annual treatment (15- 17). 

Mass Transfer Zone (MTZ) 

The mass transfer zone (MTZ) is defined as the region of the activated 
carbon column in which adsorption is taking place. The activated carbon 
behind the MTZ is in equilibrium with the influent concentration ( C ,  = 
Co). The region within the MTZ is where the adsorbent and adsorbate 
interact, and the degree of removal varies from 0 to 100%. This interaction 
is called “exhaustion,” and the resulting surface loading as WM (mg/g). 
The length of MTZ can be fixed for a given set of conduction, but Lcetical 
varies with the breakthrough concentration. 
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Surface Loading (WM) 

The surface loading (X/M) is related to column performance and can 
be defined as mass of adsorbate per mass of adsorbent. Unlike batch 
studies, the surface loading for columns is dependent on the initial adsor- 
bate concentration (the mass of carbon is constant). The surface loading 
increased with increasing initial adsorbate concentration, resulting in a 
higher metal loading per gram of carbon. 

Mechanics of a Neural System 

In a typical neural data processing procedure, the data base is divided 
into two separate portions called training and test sets. Training set is 
used to develop the desired network. In this process (depending on the 
paradigm that is being used), the desired output in the training set is used 
to help the network adjust the weights between its neurons and processing 
elements (supervised training.) Once the network has learned the informa- 
tion in the training set and has “converged,” the test set is applied to the 
network for verification. It is important to note that, although the user 
has the desired output of the test set, it has not been seen by the network. 
This is to ensure the integrity and robustness of the trained network. To 
clarify the actual functionality of a neural system, a short discussion on 
the mechanics and components of artificial neural network seems neces- 
sary. A fundamental understanding of theory and application of computa- 
tional intelligence and neural networks specifically is essential in achieving 
meaningful results and repeatable outcomes. 

In neural computing the artificial neuron is called a processing element 
or PE for short. The word node is also used for this simple building block. 
These artificial neurons bear only a modest resemblance to the real thing. 
They are barely a first-order approximations of biological neurons. Neu- 
rons in the human brain perform at least 150 different processes, whereas 
processing elements model approximately three of those processes. The 
PE handles several basic functions. It must evaluate input signals and 
determine the strength of each one. Next, it must calculate a total for the 
combined input signals and compare that total to some threshold level. 
Finally, it must determine what the output should be. Just as there are 
many inputs (stimulation levels) to a neuron, there should be many input 
signals to a PE. All of them should come into PE simultaneously. In re- 
sponse, a neuron either “fires” or “doesn’t fire,” depending on some 
threshold level. The PE will be allowed a single output signal; just as in 
a biological neuron-many inputs, one output. 

In addition, just as real neurons are affected by things other than inputs, 
some networks provide a mechanism for other influences. Sometimes this 
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extra input is called a bias term, or aforcing term. It could also be a 
forgetting term, when a system needs to unlearn something. Each input 
will be given a relative weighing which will affect the impact of that input. 
This is similar to the varying synaptic strengths of biological neurons. 
Some inputs are more important than others in the way they combine to 
produce an impulse. Weights are adaptive coefficients within the network 
that determine the intensity of the input signal. One might think of them 
as a measure of the connection strength. The initial weight for a PE could 
be modified in response to various inputs and according to the network’s 
own rules for modification. 

Mathematically, the inputs and the weights on the inputs as vectors, 
such as (Il, Z2, . . . , In) and ( W1, W 2 ,  . . . , W,) must be considered. The 
total input signal is the dot, or inner, product of the two vectors. The 
result is a scalar, not a vector. Geometrically, the inner product of two 
vectors can be considered a measure of their similarity. If the vectors 
point in the same direction, the inner product is maximum; if the vectors 
point in opposite directions (ISOO), their inner product is minimum. What 
was discussed before about signals coming into biological neuronal syn- 
apses applies here as  well: signals can be positive (excitatory) or negative 
(inhibitory). A positive input promotes the firing of the PE, whereas a 
negative input tends to keep the PE from firing. If some local memory is 
attached to the PE, one can store results of previous computations and 
modify the weights used as the process continues. This ability to change 
the weights allows the PE to modify its behavior in response to its inputs, 
or learn. When weight adjustments are made in preceding layers of feed- 
forward networks by “backing up” from outputs, the term backpropaga- 
tion is used. This is an important concept, because most networks today 
employ backpropagation algorithms . 

Now, suppose that this processing element is combined with other PEs 
to make a layer of these nodes. Inputs could be connected to many nodes 
with various weights, resulting in a series of outputs, one per node. The 
connections correspond roughly to the axons and synapses in a biological 
system, and they provide a signal transmission pathway between the 
nodes. Several layers can be interconnected. The layer that receives the 
inputs is called the input layer. It typically performs no function other 
than the buffering of the input signal. The network outputs are generated 
from the output layer. Any other layers are called hidden layers because 
they are internal to the network and have no direct contact with the exter- 
nal environment. Sometimes they are likened to a “black box” within 
the network system. Although they are not immediately visible, one can 
examine what goes on in those layers. There may be zero to several hidden 
layers. The connections are multiplied by the weights associated with that 
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particular connection. They convey analog values. Note that there are 
many more connections than nodes. The network is said to be fully con- 
nected if every output from one layer is passed along to every node in 
the next layer. 

Virtual adsorber system (VAS) presents a new and fresh approach to- 
ward soft experimentation with adsorber reactor systems such as granular 
activated carbon columns. The term soft experimentation is used to em- 
phasize two points. First, word “soft” implies that instead of experimental 
laboratories, the process is carried out using a recently developed software 
(VAS). Second, the word “experimentation” is used to accentuate the 
high degree of accuracy (comparable to actual laboratory experiments) 
achievable using this software. It should also be noted that authors are 
not using the word “modeling” for their approach. This is due to the 
nature of the main tool used for VAS development, namely artificial neural 
networks. In using neural nets to mimic a process, no mathematical model- 
ing takes place. Neural nets by definitions are model-free function esti- 
mators (18). They learn the process by observing its behavior, and esti- 
mate its functionality by adjusting the strength of network 
interconnections. Another factor that distinguishes the approach used in 
this study with mathematical modeling is the fact that during a mathemati- 
cal modeling process two sets of information are essential for correct and 
accurate results. First is the number of parameters (variables) involved 
in the process and second is an accurate knowledge of the interrelation- 
ships (no matter how complex and nonlinear) between different param- 
eters. When neural networks are used to build a function that estimates 
the process behavior, a complete knowledge of the above factors (all the 
parameters involved and their interrelationships) is not an absolute neces- 
sity. Using its massive connectivity, the neural networks can construct a 
high dimensional space through which accurate pattern recognition be- 
comes possible. Another important point that recognizes neurocomputing 
from conventional mathematical modeling is its overall behavior. Even if 
a mathematical model of a certain process is available, its use is dependent 
on the accessibility of data and information on all involved variables in 
the model. A missing piece of information can cause the model to come 
to a halt. On the other hand, once a neural network is built to mimic a 
certain process, missing pieces of information will not cause an abrupt 
and total breakdown of the system. Because knowledge is distributed 
throughout the network, as opposed to a particular location, incomplete 
information, although it may jeopardize an accurate result, will not stop 
the whole process. As is known in neurocomputing circles, neural net- 
works will “degrade gracefully.” 
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MATERIALS AND METHODOLOGY 

Experimental Procedures 

The experimental work was conducted at the Environmental Engineer- 
ing Laboratories of West Virginia University. GAC columns were oper- 
ated in the upflow mode. The column setup schematic is presented in Fig. 
I .  Sixty-seven bench-scale experiments were carried out for the removal 
of lead from a synthetic wastewater using a GAC column. Lead nitrate 
was used as the source of lead for each experiment. The background 
electrolyte was sodium nitrate because it does not form complexes with 
lead. Wastewater pH was maintained at 5.4 to make sure the lead remained 
soluble. The pH was adjusted using nitric acid and/or sodium hydroxide. 
Parameters monitored during the experiment are presented in Table 1 .  
Several different types of columns were used to achieve the specified 
empty bed contact times (EBCTs). The carbon was washed and sieved 
through a US No. 50 mesh sieve and added to the column by a slurry 
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FIG. I Schematic of GAC column setup. 
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TABLE 1 
Parameters Monitored for the VAS Development 

Number Parameter Range 

Mass of activated carbon 
Length of column (cm) 
Diameter of the column (cm) 
Number of bed volumes treated 

Number of regeneration 
Concentration of lead (mg/L) 
Empty bed contact time (EBCT) 
Hydraulic loading ratio (gpm/ft’) 

per day 

33-500 g 
15-12  cm 
2.5-3.18 cm 
117-1556 BVIday 

0-4 times 
1-50 mgiL 
1.85-12.75 minutes 
2-4 gpmift’ 

method to avoid the presence of air bubbles. A variable speed Cole-Palmer 
pump was used to maintain the influent hydraulic loading rate. A carbon 
treatment step consisting of contacting the carbon columns with 10 bed 
volumes of 0.1 N HCl followed by 10 bed volumes of 0.1 N NaOH was 
employed for all the experiments. Several different influent concentrations 
of lead were investigated. The influent pH was maintained at 5.4, and 
sodium nitrate at an ionic strength of 0.01 N was used as a swamping 
electrolyte. Following each column run the carbon was regenerated using 
the same procedure as the pretreatment step. The acid rinse desorbed the 
lead and the base rinse reconditioned the carbon for the next run. For 
reproducibility, the experiments were repeated at least three times. 

Lead samples were preserved by acidifying with concentrated nitric 
acid. The higher concentrations of lead were analyzed using a Perkin- 
Elmer Model 3100 ZL Atomic Adsorption (AA) spectrophotometer. The 
lower concentration ( 1  ppm) was measured with a Zeeman Atomic Ad- 
sorption Spectrometer. Criteria used to study the column performance 
include breakthrough bed volume, exhaustion bed volume, and surface 
loading. A schematic of the output data is presented in Fig. 2. A bed 
volume is the volume occupied by the carbon bed, including carbon vol- 
ume and void volume. Breakthrough is the number of bed volumes treated 
when effluent concentration is 3% of influent concentration. Exhaustion 
bed volumes are the number volumes treated when effluent concentration 
is 95% of the influent concentration. Surface loading is the ratio of the 
mass (mg) of lead adsorbed on the carbon bed to the mass (g) of carbon 
in the column. 
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FIG. 2 Schematic of GAC column output data. 

Neurocomputing Procedures 

The bench-scale GAC column data was used to design and develop the 
virtual adsorber system (VAS). An ensemble of several neural networks 
was designed to mimic the experimental study. The compiled data were 
applied to the network, and the network parameters were tuned for opti- 
mum results. In Fig. 3 the architecture of the neural network designed 
for VAS is presented. The architecture, a fully connected network, in- 
cluded 240 synaptic connections (pertaining to a 240 dimensional hyper- 
space) between 13 input neurons, 15 hidden neurons, structured in a single 
layer and an output layer containing 3 neurons. Bipolar linear normaliza- 
tion was used in the input layer, and logistic function was used as the 
main activation function in the hidden and output layer neurons. Back- 
propagation of error was used as the training paradigm. The VAS was 
designed to predict bed volume at breakthrough, bed volume at exhaus- 
tion, and surface loading (ratio of the mass of contaminant to the mass 
of activated carbon) in a GAC column that removes lead from water. 
Eleven experiments called the verification samples were selected from 
the 67 bench-scale experiments. The remaining 56 laboratory experiments 
were chosen as the training data to train the neural network. Five sets of 
training data were selected to test the VAS. The organization of data 
samples for training and testing is presented in Table 2. The purpose of 
separating the verification samples was to test VAS’s predictive capabili- 
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INPUT LAYER HIDDEN LAYER OUTPUT LAYER 

FIG. 3 Architecture of the neural network for the virtual adsorber system (VAS). 

ties using an independent set of data. The performance of the final product 
(VAS) was based on how well the network could generalize what it had 
learned and how well it could predict the outcome of the contaminant 
removal process on a set of data it had never seen before. 

RESULTS AND DISCUSSIONS 

The results of the 67 bench-scale experiments were presented in previ- 
ous papers (9, 10, 19, 20). In this paper the data were used to develop 

TABLE 2 
Organization of Data Samples for Training and Testing 

Set Testing set runs Training set runs 

1 

2 

3 

4 

5 

R2, R14, R16, R18, R21, R27, R29, R32, 

R1, RI ,  R11, R15, R22, R27, R32, R3246, 

R20, R21, R25, R29, R31, R43, R51, R62, 

R2, R8, R20, R22, R30, R32, R48, R49, 

RI ,  R5, R21, R41, R43, R48, R51, R52, 

56 Runs selected from a total of 67 

56 Runs selected from a total of 67 

56 Runs selected from a total of 67 

56 Runs selected from a total of 67 

56 Runs selected from a total of 67 

R52, R62, R66 

R51, R59, R60 

R64, R65, R66 

R60, R63, R66 

R53, R66, R68 
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FIG. 4 Actual and virtual measurement of breakthrough. 
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980 CARRIERE ET AL. 

and evaluate the performance of the VAS for removal of lead. The artificial 
neural network (using a supervised training paradigm) was trained with a 
set of data (training data) that included the pair of input and the corre- 
sponding output values. The weight (strength) of the connections between 
neurons were initialized and the training started by exposing the network 
to one set of the input data (input-output pair) at a time. As the network 
observed the input-output pair, it adjusted the weights of its connections 
to capture different features presented in the training data. Some conver- 
gence criteria were set for reaching acceptable results. Once the conver- 
gence was achieved, the network had reached a stable state. At this point 
the network had extracted all the necessary information from the training 
data and had established a complex pattern between input and output 
variables. Information and knowledge were encoded in the form of stable 
states or mapping embedded in the network. Once this step was com- 
pleted, the network was ready to recognize any pattern related to the 
problem. Five sets of training data were used to test the VAS. Actual and 
virtual measurement of bed volume (BV) at breakthrough, exhaustion, 
and the surface loading data for both the training data and verification 
samples are presented in Figs. 4, 5 ,  and 6, respectively. Please note that 
these figures represent only the data set 2. As observed, the VAS results 
indicated that decreasing the influent lead concentration from 50 to 1 mg/ 
L (ppm) increased the number of bed volumes (BVs) of wastewater treated 
at breakthrough from 30 to 950 BVs and at exhaustion from 200 to 1650 
BVs. The surface loading was noticed to decrease from 17 to 1.8 g Pb/g 
carbon. In addition, increasing the empty bed contact time (EBCT) from 
1.85 to 12.75 minutes for each influent lead concentration increased the 
bed volumes of wastewater treated at breakthrough but decreased the bed 
volumes at exhaustion, while the surface loading slightly changed for the 

TABLE 3 
Coefficients of Correlation for Test and Training 

Coefficients of correlation, R 

BV at breakthrough BV at exhaustion 

Set Test Training 

I 0.998 0.996 
2 0.991 0.999 
3 0.967 0.996 
4 0.991 0.995 
5 0.994 0.993 

Test Training 

0.990 0.995 
0.960 0.999 
0.996 0.995 
0.966 0.994 
0.988 0.988 

Surface loading 

Test Training 

0.990 0.994 
0.998 0.999 
0.979 0.998 
0.990 0.997 
0.984 0.994 
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FIG. 5 Actual and virtual measurement of exhaustion. 
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lower Pb concentration (1 and 10 mg/L of Pb). Clearly the network had 
learned the training data well and could reproduce the experimental results 
that it had been trained on with accuracies of about 97%. The correlation 
coefficients, R ,  for the five training sets of data obtained from the VAS 
software are presented in Table 3. The average coefficients of correlation 
for bed volumes at breakthrough and exhaustion and for surface loading 
are 0.996, 0.994, and 0.996, respectively. 

The bottom graphs in the aforementioned figures (verification samples) 
test the generalization power of the developed VAS. A degree of accuracy 
of 96% could be achieved for the five test sets. The correlation coeffi- 
cients, R ,  for the five verification samples data obtained from the VAS 
software are presented in Table 3. 

The VAS software provided very accurate values for bed volumes at 
breakthrough, bed volumes at exhaustion, and surface loading for sets of 
input data (experimental conditions) that it had never seen before. The 
average coefficients of correlation for bed volumes at breakthrough and 
exhaustion and for surface loading are 0.988, 0.980, and 0.988, respec- 
tively. 

CONCLUSIONS 

Granular activated carbon (GAC) column data on lead removal in aque- 
ous system were collected from 67 bench-scale experiments to develop the 
virtual adsorber system (VAS) based on artificial neural network (ANN) 
technology. The data obtained from the VAS indicated that decreasing 
the influent lead concentration from 50 to 1 ppm increased the number of 
bed volumes (BVs) of wastewater treated at breakthrough from 30 to 950 
BVs and exhaustion from 200 to 1650 BVs, but decreased the surface 
loading from 17 to 1.8 g Pb/g carbon. In addition, increasing the empty 
bed contact time (EBCT) from 1.85 to 12.75 minutes for each influent 
lead concentration increased the bed volumes of wastewater treated at 
breakthrough but decreased the bed volumes at exhaustion, while the 
surface loading slightly changed for the lower Pb concentration ( 1  and 10 
ppm of Pb). Five sets of training data were used to test the VAS. It was 
found that the VAS could predict the bed volumes at breakthrough and 
exhaustion and for surface loading with an accuracy of 97%. The average 
coefficients of correlation, R ,  between actual and virtual measurements 
of bed volumes at breakthrough and exhaustion and for surface loading 
were 0.988, 0.980, and 0.988, respectively, for the verification data, while 
they were 0.996, 0.994, and 0.996 for the training data. The high values 
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984 CARRIERE ET AL. 

of the correlation coefficients demonstrated the high performance of the 
VAS for removal of lead. 

The outcome of this study can be used to help engineers in selecting 
the best combination of parameters for heavy metal treatment and help 
them in designing the process by eliminating the need for further lengthy 
and costly experimentations. The main characteristics of VAS are that 
unlike conventional approaches based on rigorous mathematical models, 
there is no attempt in VAS to mathematically model the decontamination 
process. This is an advantage of the process being introduced in this study. 
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